Divergent Metabolic Regulation of Autophagy and mTORC1—Early Events in Alzheimer’s Disease?

نویسندگان

  • Mai A. Shafei
  • Matthew Harris
  • Myra E. Conway
چکیده

Alzheimer's disease (AD) is a progressive disease associated with the production and deposition of amyloid β-peptide (Aβ) aggregates and neurofibrillary tangles, which lead to synaptic and neuronal damage. Reduced autophagic flux has been widely associated with the accumulation of autophagic vacuoles (AV), which has been proposed to contribute to aggregate build-up observed in AD. As such, targeting autophagy regulation has received wide review, where an understanding as to how this mechanism can be controlled will be important to neuronal health. The mammalian target of rapamycin complex 1 (mTORC1), which was found to be hyperactive in AD brain, regulates autophagy and is considered to be mechanistically important to aberrant autophagy in AD. Hormones and nutrients such as insulin and leucine, respectively, positively regulate mTORC1 activation and are largely considered to inhibit autophagy. However, in AD brain there is a dysregulation of nutrient metabolism, linked to insulin resistance, where a role for insulin treatment to improve cognition has been proposed. Recent studies have highlighted that mitochondrial proteins such as glutamate dehydrogenase and the human branched chain aminotransferase protein, through metabolism of leucine and glutamate, differentially regulate mTORC1 and autophagy. As the levels of the hBCAT proteins are significantly increased in AD brain relative to aged-matched controls, we discuss how these metabolic pathways offer new potential therapeutic targets. In this review article, we highlight the core regulation of autophagy through mTORC1, focusing on how insulin and leucine will be important to consider in particular with respect to our understanding of nutrient load and AD pathogenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanisms and consequences of hepatic regulation of mTORC1 by metformin

Background In mammals, the ability to sense and respond to both intracellular and extracellular nutrient levels requires the integration and cooperation of multiple complex metabolic regulatory networks. Key among these are the mTOR and AMPK signaling pathways, which are activated in response to increased or decreased cellular energy levels, respectively. These pathways control cell growth, pro...

متن کامل

Therapeutic targeting of cellular metabolism in cells with hyperactive mTORC1: a paradigm shift.

mTORC1 is an established master regulator of cellular metabolic homeostasis, via multiple mechanisms that include altered glucose and glutamine metabolism, and decreased autophagy. mTORC1 is hyperactive in the human disease tuberous sclerosis complex (TSC), an autosomal dominant disorder caused by germline mutations in the TSC1 or TSC2 gene. In TSC-deficient cells, metabolic wiring is extensive...

متن کامل

Dehydroepiandrosterone-induced activation of mTORC1 and inhibition of autophagy contribute to skeletal muscle insulin resistance in a mouse model of polycystic ovary syndrome

Polycystic ovary syndrome (PCOS) is the most common endocrinopathy in women of reproductive age and also an important metabolic disorder associated with insulin resistance (IR). Hyperandrogenism is a key feature of PCOS. However, whether hyperandrogenism can cause IR in PCOS remains largely unknown. The mammalian target of rapamycin complex 1 (mTORC1) and its regulated autophagy are closely ass...

متن کامل

Reinstating Aberrant mTORC1 Activity in Huntington’s Disease Mice Improves Disease Phenotypes

Huntington's disease (HD) is caused by a polyglutamine tract expansion in huntingtin (HTT). Despite HTTs ubiquitous expression, there is early and robust vulnerability in striatum, the cause of which is poorly understood. Here, we provide evidence that impaired striatal mTORC1 activity underlies varied metabolic and degenerative phenotypes in HD brain and show that introducing the constitutivel...

متن کامل

AWARD NUMBER: W81XWH-13-1-0354 TITLE: “Targeting the Adipocyte-Tumor Cell Interaction in Prostate Cancer Treatment” PRINCIPAL INVESTIGATOR:

s and presentations: “Nutrient sensing and Cancer Metabolism by the p62 autophagy pathway” University of Pennsylvania, Philadelphia, 2014. Speaker (Moscat). “New role of metabolic reprograming in stroma-induced tumorigenesis” Centre for Genome Regulation, Barcelona, Spain, 2014. Speaker (Moscat). “Metabolic Reprogramming by the p62 Pathway in Cancer” in the “2014 ASIP Annual Meeting at Experime...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017